Note: This section consists of total four questions. Attempt any one question. Each question carries 15 marks. [15×1=15]

- Design a synchronous sequential 3 bit counter using JK flip flop.
- 7. Simplify using K-map π (1, 3, 5, 7, 8,8, 11, 12, 13, 15) with don't care π (1, 10, 14) in SOP and POS form.
- 8. What is 3 bit Ripple counter? Show its circuit. Also, explain the functioning of the circuit.
- Discuss about Associative memory, Static RAM and Dynamic RAM. Write one use of each type of these memories in computer design.

Dall No	
KOH NO.	***************************************

Total No. of Questions: 9]

[Total No. of Printed Pages: 4

BCA-3004

BCA (Semester-III) (NEP) Examination, 2024-25

(Major)

DIGITAL ELECTRONICS AND COMPUTER ORGANIZATION

[Paper: Fourth]

Time: 2 Hours

[Maximum Marks: 75

Note: 1. This paper consists of three sections A, B and C.

Attempt questions from all sections as directed.

- 2. The candidates are required to answer only in serial order. If there are many parts of question, answer them in continuation.
- 3. "B" Copy will not be provided.

Section-A

Short Answer Type Questions

Note: All questions of this section are compulsory. Each question carries 5 marks. [9×5=45]

- 1. (a) What is the meaning of minterm and maxterm notation in a Boolean function? Show with a truth table.
 - (b) Write the truth table representing a full adder and show its simplified output functions.
 - (c) Convert hexadecimal 2A to its equivalent octal and binary.
 - (d) What is flip flop? Show characteristics table of SR and JK flip flop.
 - (e) Show the truth table of 2 bit comparator and its simplified output functions.
 - (f) Write the no. of chip select input, no. of bits in address line, no. of bits in data line of a 4096 x 16 RAM.
 - (g) What is the advantage of Cache memory organization?
 - (h) State and prove De Morgan's theorem .

(i) What is a Multiplexer? Show the example of 4x1 MUX and describe.

Section-B

Long Answer Type Questions

Note: This section consists of total four questions. Attempt any one question. Each question carries 15 marks. [15×1=15]

- Write the truth table of XOR, NAND, NOR. Justify why NAND is a universal gate. Implement F= AB + CD using only NAND gates.
- What is Register? Write about different types of register
 and its categories with proper illustration.
- Design a BCD to Excess-3 code converter following proper process of combinational circuit design.
- What is a Decoder? Design a full adder using decoder.
 Design a 4x16 decoder using two 3x8 decoder.

Section-C

Long Answer Type Questions